a2 United States Patent

US009287893B1

(10) Patent No.:

US 9,287,893 B1

Pflederer 45) Date of Patent: Mar. 15, 2016
(54) ASIC BLOCK FOR HIGH BANDWIDTH LZ77 g’ég%’g;; gé Zgggé E’e(ria hetal
s A adatch et al.
DECOMPRESSION 8,106,799 Bl 1/2012 Yang et al.
8,350,732 B2* 1/2013 Carlson HO3M 7/3086
(71) Applicant: GOOGLE INC., Mountain View, CA aon 34141
(US) 8,711,164 B2 4/2014 Dye
8,854,235 Bl 10/2014 Tseng et al.
. ; EE g e 8,933,824 Bl 1/2015 Agarwal et al.
(72) Inventor: ggt(l[ljlsl)obert Pflederer, Mountain View, 8047270 B2 22015 Gopal et al.
OTHER PUBLICATIONS
(73) Assignee: GOOGLE INC., Mountain View, CA : : :
(US) Zito-Wolf, A Broadcast/Reduce Architecture for High-speed Data
Compression, Proceedings of the Second IEEE Symposium onParal-
(*) Notice: Subject o any disclaimer, the term of this lel and Distributed Processing, Dec. 1990, IEEE, p. 174-181.*
Primary Examiner — Howard Williams
o4
(21) Appl. No.: 14/702,420 (74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch &
. Birch, LLP
(22) Filed: May1,2015 e
(51) Int.CI (57) ABSTRACT
HO3M 7/30 (2006.01) Disclosed is an integrated circuit having a decompression
GO6F 3/06 (2006.01) block. The decompression block is configured as a pipeline
(52) US.CL that may include a length module and a distance module. The
CPC ... HO3M 773086 (2013.01); GO6F 3/0641 length module evaluates a length for each symbol. The dis-
(2013.01) tance module may resolve distances in an at least one length-
: : : distance pair. The length module may include a shifter stage
(58) Field of Classification Search p) 1ay &
CPC .. HO3M 7/3084: HO3M 7/3086: GOSF 3/0641 configured to store two consecutive words, and control a
See al;plication file for complete search history sliding window of symbols, in order to extract literals or
' distances. The length module may include a mapper stage
(56) References Cited configured to map the literals or distances to positions in the

U.S. PATENT DOCUMENTS

5,521,597 A 5/1996 Dimitri

5,525982 A * 6/1996 Cheng HO3M 7/3086
341/106

5,532,694 A * 7/1996 Mayers GO6T 9/005
341/67

6,145,069 A 11/2000 Dye

INPUT STREAM: Symbols

output stream. The distance module may include a pointer
replacement stage and a resolution stage. The pointer replace-
ment stage configured to replace distances, represented as
pointers within an output word, with either literals or other
pointers to prior words. The resolution stage configured to
replace the other pointers with literals, and output the literals.

10 Claims, 14 Drawing Sheets

201

] 210 J 200
Length 1
! Module
I 1
1 220 1
1 Symbol Position: end_byte, |
end_word
| 1
| }
1
: /2303 /230b |
| | Upper Shifter I | Lower Shifter I 1
I i
1 1
1 |
1 1
I I
w —TmTTTTITTIIT ? a0

Distance
Module

OQUTPUT STREAM:; Literals

US 9,287,893 B1

Sheet 1 of 14

Mar. 15, 2016

U.S. Patent

\

(pessaldwooun)

solAq AU_
Apeasjno A”

/

s|npow

SouUe]sIp AI|||

a|npow
yibua|

oow\

00¢ <

—

”V Apeals ul

[leAe” }no
, HUNoaID pajelbaju) uoissesdwodsq d| \

ol

l 'Ol

A” [leAe™ul

(passaidwo))

s|joqwAg

US 9,287,893 B1

Sheet 2 of 14

Mar. 15, 2016

U.S. Patent

¢ Old

I

(=
O]
Ol

O
o
N

sjelsy : d1no
soe—1 © WY3HLS LN

lIIIII....!IIIIIIIIIlIIIIIIII
I - |
(anjosal) suledld , 4
| owm.\ 1
! 1
1 I
I ainpow _ (piom uiyum) suljadd .~ 3 1
| eouelsia g8 [
L o oo o o oo o o o e e e e ml mm mm e e e mm e mm m m mm md
SEN e o SN N BN RS S GRS o MR e = e e e W S S R S R A S e
“ Jaddep "
I O¢N.\ 1
1 I
| l
I JBYIUS JaMOT J8YIys Jaddn 1
| |
i Qomw.\ momw\ I
| I
I - 1
I pJom pus I
1 o2z A 8140 pu@ uonisod [oquWAS :
: 3INPON '
1 Wbua (anjea”pua) suladid , d I
! oLz~ I
T U —— e TR R R R R
S|oqWAS INYIHLS LNdNI
10Z -~

US 9,287,893 B1

Sheet 3 of 14

Mar. 15, 2016

U.S. Patent

Jaddepy
v ofeyg

ovm.\

R

omm\

9inpojy ybue

j=
[
QY

¢ Old

AMOPUIM
Buipys - jepys [
¢ obelg
piom pus
pue a}Aq pua se uollsod |
jOqWIAG aulwIS1ep

A 'z obeis sanjeA pus

0ce (auipadid)

N\ | abeig

ol ’
O/l Baspusd
osz—] 02— P
jnaaIp uone|nojed
HLQIM [oqwiAg
$sa00.dald
—_ 202
Apeal ino
- lleae”ul
[leAe Hlso 1988l Aely [OQUIAS
Apeals—ul Yo nduj
y5e—" 25z = Loz—"

US 9,287,893 B1

Sheet 4 of 14

Mar. 15, 2016

U.S. Patent

JoqWAS 3o yibusT

aAlje|nwwny :Bal pusd

oL

+

¥ "Old

[L-H1aimlBas"pus d ybnoiyy

_[ziH1aimIBes Bai™d 03 [L-z/H1AIM] <+
Ba1"pus~d ppe :(H1dIM)zho) ebeis-ang |

60t~

sonjep pug

[2]Bai pua~d ubnouu; []6asd
o0} [g]Bas pua d ppe :g sbelg-ang

hov\

[g]Bai pusTd pue [g]Bes pus d
o1[)]Bes pus d ppe :| abejg-ang

SOb7=”

(ppo)bas pusd

01 (usns)fbes pusd
ppe :Q sbejs-qng

cor="

0l

[4

)

JoquAsg

40 yibua :Bas pusTd

L0% —

US 9,287,893 B1

Sheet 5 of 14

Mar. 15, 2016

U.S. Patent

G Old

015

(s)plom pua (s)o1kq pus

A

anjeA”pua yoes 1o}

spiom jebiey
usamiaq SaLepunoq sjejnojes

[~ 605

+

[u]lenien pus jo s)iq Buluiews.
= [u]piom™ pus :Bal piom pus

+

[ulenjea™pus Jo [O:N]
siq = [u]alAg pus Bai a)Aq pus

A
plom

snoinald woyy [GL]e1kg pus + [u]
anjea pus = [u](mau)anjea pue

N— €08

A

obeig

uomsod joquiAg

(=]
[gV]

10S

anjea pus :Bas pus d

US 9,287,893 B1

Sheet 6 of 14

Mar. 15, 2016

U.S. Patent

s|joquwiAs sse00.d

mopuim Buipijs anow

609 +7 a

S|OQUUAS JoBAIXD

209 *

mopuim Buipyjs uoyisod

G09

9 Old

PJOAA JOMOT]

-

pJOAA Jodd) |g—

8@\ S@\

J
8@\

0ee

sbejs Jeyiys

US 9,287,893 B1

Sheet 7 of 14

Mar. 15, 2016

U.S. Patent

paAlgoal usag
SBY PJOM [[N} B [N
\ S|oqWAs 8jeinwnooe
ver Z leddew
0¢L
urewop jobiey <
- sjoquiAs 1ob6ue] <- mopuIm
Buipys wouy sjoquis
_ Xujew sjessush
€L
mopuim Buiplis
wo.y sjoquiAs sinydes
ni=
| Jaddew
0Lz
abejg Jaddey

O

L Old

US 9,287,893 B1

Sheet 8 of 14

Mar. 15, 2016

U.S. Patent

S9JAQ JO ALy

ndino
Bw\

spJom ndino Joud
0} S©JUSJo8) SA|0SaY <
[(sulledid) 9 obels

c8

pJom Indino ue uiyim
S90UBII8 BAJ0SDY
‘(eutjedid) G obels

a|npoy aouesiq 018

o
[ce}

siaui0d
OJuUl S8dUE)}SIQ PBAU0D
“HNDJID UOISIBAUOD

8 9|4 oe—"

US 9,287,893 B1

Sheet 9 of 14

Mar. 15, 2016

U.S. Patent

b-HLAIM - 0 0} L-HLAIM
- Z/HLQAIM S81Ag Wwolj seousIajal aAj0sal

©-G abelg

P

Bm\ TS OTeT T T 00T I,
so}Aq WO} S80UBI)0I SA|0SS)
:Z-G obe)s

e

G08

mow\

GrO0l.9.100l¢¢
$8)AQ WO} S90UBIBJB) BA|0SDI <

'L-G obejg

row.\

s9}AQ UBAS 0} $3)JAQ pPO
WO} S8OUBIBI8) SA0SAI
:0-G obeig

PJOM UIYlIM S80UBI8J81 BA|0Sal (G obe)g

(o]

6 Old

US 9,287,893 B1

Sheet 10 of 14

Mar. 15, 2016

U.S. Patent

(possaisdwooun) soiiq

owor\ +

s|eoy| 0}
pajepdn aie sjoquifs |e - - —.
‘L + H1d3qg ebeis-gng

|
2101~ !
|
|
|
|
L e e
|
|
|
ayepdn
‘suulod ale jey; sjoquiAs
108)8p 0 8beIg-gNg
:o_‘u\ *
pJom 1xau dod
spJom Joud 0] s8ousisjel BAj0Sal (g abelg N\~ 1001
[o/43

Ol Old

US 9,287,893 B1

Sheet 11 of 14

Mar. 15, 2016

U.S. Patent

Zsplom
alow spJom Hiys
6LLLS nns”” SIA SPIOM 92UNOS
ON |, aapnoasuoo om} Jndut
£011S7
(piom pue
‘9]Aq” pue <- anjea pua)

[PJOM™ pus

pue alAgq” pus ue

OJul 3N[eA pus Yyoes 1|ds

‘loquiAs Joud

(woysod mopuim Buiplls saow woJ} 81AqpuB Jeul ppe
“ ooueysip | [ess))) €L1LLe”” * oLl (enjea pus
‘soueysip | [eso))

weans
ndino ur uomsod fg—— Jaddeuw o} sjoquiAs

0} sjoquuiks dew pjo3)9s Jndino |OQUWIAS ejep yoes

ezl 1= LLLLS ™ * 10} enjen pus sje|najen
4 €oLLS =" (ybus
“ souelsip | |esey))

sjoquiAs
Uipim 0} dn jos)as

60LLS="
Ll Ol ow

AI.

>

pJom mau indul |[oquwAs eyep

Yoes 10} Yjpim aejnojen

L0LLS +
Oﬁmcm._ UcqumU

1ZLLs

US 9,287,893 B1

Sheet 12 of 14

Mar. 15, 2016

U.S. Patent

¢l Old

AR

A TARS

10218

D

((s)esom)

SpJom
Jold 0] S80UBIR) BAJ0SS

(pJom Joud 0y Jou | |elayy)

piom 1ndino swles
UIYIM Sa0UBIB}8) BA|0Sal

(ueruiod <81Ag ‘piom> | [esdN})

(uonisod
plom aANe|al) play pJom pue
(uomsod @1Aq snjosge) pisy

9)Aq ulejuo9 jey; sisulod
O}UI S8oUBISIP LISAUOD

(uomsod ‘ souessip | |esay))

m SOOUBISIP SA|0SD u

US 9,287,893 B1

Sheet 13 of 14

Mar. 15, 2016

U.S. Patent

\

Bulnoenuew Joy
W0} 0} UOISISALOYD

6S

»

N0y pue soe|d

+

uoleINWIS [9AST 9D SISEUIUAS LY

g +

uolesyLIoA
mw\ »

_| - b |

|

el
Buipod 1LY |1
¥S - -

ubisaq |ana] Mo

»

ubisaq |9na7 ybiy

+

uoneaynadg

US 9,287,893 B1

Sheet 14 of 14

Mar. 15, 2016

U.S. Patent

(06¥1) (8)301A3d

___________ﬁ____________

An__Hv (8)1¥0d
|
_
_
_
|
|

ONILNdINOD
HIHLO
e —————— _
i
3.2
{esv1) (18¥1)
(s)L80d K= ¥3T10HLNOD
WINOD MHOMLAN

08¥ 1) SIDIAGA NOILVIOINNIWNOD

-

(eLv))

(Ziv1)
HITIOHLNOD
JOVAHILNI
13 7IVHVd

(S)1d0d

on

-

(LivL)
HATIOHLNOD
JDVAYILNI
VAEER)

(0Z¥1) SHOVIYILNI TVddHdIE3ad

(Zvrl) SNG IOV4YTLNI

=)

(covt)

(zorl) LINN
DNISSIO0Ud
olany

NY

=

(Lo¥L) LINN
ONISSIDOYA
SOIHAVYYD

(09¥1) S30IA3A LNdLNO

(LyrL) SN FOV4YTLNI IDVHOLS

N V| 3ovauaiNysna

<

=~ >

~ >

(o¥¥1)
HIATIOHLNOD

(Z6¥L) 3OVHOLS
I19YAOINTY
-NON

JF1GVAONZSH

(1s¥1) IODVHOLS

A (0evL) SNA AYOWAN

GLyL)
HIATIOHINOD AHOWIN

-

V1vad G3SS3IUdNOD

(szri)

7erl) ViVA AVHOO0Hd

(FLrl) SHALSID3Y

(ELpL) dSaiNd4inv
JHOD HOSSID0Nd

{Livy)
IHOVD IHOVO
Z 13AT L I3AT

(zivl)

dSa/on/dn

{01P1) HOSS3D0Yd

NHLI™ODTY
NOISS3ddINODAd

(ezpi)

{¢Zv1) NOILVONddY

(12¥L) INTLSAS ONILYYILO

WYH/WOA

118149}

NQWVAINQENQoIsyd - o o o -

US 9,287,893 B1

1
ASIC BLOCK FOR HIGH BANDWIDTH LZ77
DECOMPRESSION

BACKGROUND

The present disclosure relates to decompression of a com-
pressed data stream. The present disclosure relates to decom-
pression of compressed data having a length and distance, or
offset, encoding, such as the .Z77 compression technique.
The disclosure includes decompression hardware which is
described as a functional block to be integrated into an Appli-
cation Specific Integrated Circuit (ASIC) as part of a System
on Chip (SOC). The decompression hardware can be applied
to decompression of data stored in main memory of a com-
puter system. The decompression hardware may make use of
existing hardware components. The decompression tech-
nique is applicable to a software, or hybrid software and
hardware implementation.

L.Z77 is a known compression technique which removes
redundancy from a byte stream by replacing a string of bytes
that repeats within the input stream with a reference, or
pointer, to a prior instance of the same bytes. The reference is
encoded as a <length, distance> pair, where length is the
number of bytes being replaced and distance is the number of
bytes prior in the input stream where the prior instance
occurred. The output of LZ77 compression is a sequence of
symbols which represent either literal bytes or <length, dis-
tance> pairs.

The 1.Z77 technique lends itselfto a sequential decompres-
sion, as the bytes produced by any symbol may depend on the
bytes produced by any prior symbol. The sequential nature of
the decompression process imposes a limit on the rate that
decompression can be performed.

It is estimated that [.Z77 decompression implemented in
software may achieve about 1 GB/s.

Some operating systems provide a feature of using a por-
tion of main memory as a swap device. There is a need to
compress data for storing in the swap device, for example, in
cases where the amount of data to be stored is large and it is
desired to limit the size of main memory. The swap device is
used to store data that has not been recently used. The swap
device can be used to compress and store data that has not
been recently used, as data that is less likely to be used in the
near future. Subsequently, when a page fault occurs, the
needed data is obtained from the swap device by way of
decompression processing. It is desired to make such decom-
pression processing as fast as possible in order to avoid incur-
ring a significant penalty that would negate the benefit of
using compression to store data in main memory.

Various approaches have been devised to speed up decom-
pression, including decompression of data that has been com-
pressed using the [LZ77 compression technique. In an
example, a decoder is configured to decode up to 4 codewords
at a time, guaranteeing minimum throughput of 4F symbols
or Bytes/second, where F is the clock frequency.

However, for doing decompression of data maintained in a
portion of main memory, it is considered necessary to obtain
a much higher decompression rate than known approaches,
together with maximizing bandwidth. Example embodiments
of the disclosed invention are expected to achieve 16 GB/s
decompression rate.

SUMMARY

This Summary introduces a selection of concepts in a sim-
plified form in order to provide a basic understanding of some
aspects of the present disclosure. This Summary is not an

25

35

40

45

55

2

extensive overview of the disclosure, and is not intended to
identify key or critical elements of the disclosure or to delin-
eate the scope of the disclosure. This Summary merely pre-
sents some of the concepts ofthe disclosure as a prelude to the
Detailed Description provided below.

The present disclosure generally relates to integrated cir-
cuits and methods for decompressing a stream of symbols
into original literals.

An aspect is an integrated circuit, comprising a decompres-
sion block that receives as input a compressed input stream
made up of symbols in M words, each word having up to N
symbols, where M and N are a positive integers, and that
outputs an uncompressed output stream made up of an array
of literals, the array of literals being original literals before
compression; the decompression block is configured as a
pipeline that includes a length module and a distance module,
the length module evaluates a length for each symbol, the
distance module resolves the distances in the at least one
length-distance pair; the length module comprising a shifter
stage configured to store two consecutive words, and control
a sliding window of S symbols, where S is a positive integer,
in accordance with end word values in order to extract literals
or distances, the end word values represent the number of
uncompressed words between the start of the first symbol and
the end of a current symbol; a mapper stage configured to
receive the literals or distances from the sliding window and
using end byte values map the literals or distances to positions
in the output stream, the end byte values represent the abso-
lute position in the output stream where a given symbol ends;
the distance module comprising a pointer replacement stage
configured to replace distances, represented as pointers
within an output word, with either literals or other pointers to
prior words; a resolution stage configured to replace the other
pointers with literals, and output literals and the replacement
literals to the uncompressed output stream.

In a further aspect, the length module further comprises an
end value pipeline having a plurality of stages that calculate
for each of the N symbols an end value as a cumulative length
from a first symbol to the Nth symbol in the array of N
symbols; and a symbol position stage that adds an end byte
from a last symbol of a previous word to the cumulative
length for each symbol and that splits each end value into an
end byte and an end word, to obtain the end byte values and
the end word values.

In a further aspect, the end values are split into two equal
sized fields.

In a further aspect, the plurality of stages in the end value
pipeline include adders that perform cumulative additions
based on results of earlier stage adders, wherein adders are
split across two or more of the stages.

In a further aspect, the shifter stage uses the end word
values to determine that remaining bits in the sliding window
are read from the second of the two consecutive words, and to
determine that a new word needs to be accepted from a prior
stage.

In a further aspect, the pointer replacement stage and the
resolution stage are pipelines.

In a further aspect, the pipeline in the resolution stage has
Depth+1 stages, where Depth is a dictionary size in bytes
divided by 16.

In a further aspect, the resolution stage has two steps in
which, in the first step pointers longer than a predetermined
distance are resolved by lookup in an external memory, and
the second step resolves pointers in a pipeline.

An aspect is a method of decompressing a compressed
input stream of symbols to produce an output stream of liter-
als, comprising performing a length operation on the input

US 9,287,893 B1

3

stream to produce an array of literal bytes and distances;
performing a distance operation to produce an array of literals
from the array of literal bytes and distances, wherein the
length operation comprises receiving a word from the input
stream of symbols, the word including N symbols; perform-
ing a shifter stage, the shifter stage stores two consecutive
words from the input stream, and controls a sliding window of
S symbols, where S is a positive integer, in accordance with
end word values in order to extract literals or distances, the
end word values represent the number of uncompressed
words between the start of the first symbol and the end of a
current symbol; performing a mapper stage to receive the
literals or distances from the sliding window and using end
byte values to map the literals or distances to positions in the
output stream, the end byte values represent the absolute
position in the output stream where a given symbol ends;
wherein the distance operation comprises performing a
pointer replacement stage to replace distances, represented as
pointers within an output word, with either literals or other
pointers to prior words; performing a resolution stage to
replace the other pointers with literals; and outputting to the
output stream an array of literals based on the replaced point-
ers.

In a further aspect, the length operation further comprises
calculating for each of the N symbols an end value as a
cumulative length from a first symbol to the Nth symbol in the
array of N symbols; adding an end byte from a last symbol of
aprevious word to the cumulative length for each symbol; and
splitting each end value into an end byte and an end word, to
obtain the end byte values and the end word values.

Further scope of applicability of the methods and systems
of the present disclosure will become apparent from the
Detailed Description given below. However, it should be
understood that the Detailed Description and specific
examples, while indicating embodiments of the methods and
systems, are given by way of illustration only, since various
changes and modifications within the spirit and scope of the
concepts disclosed herein will become apparent to those
skilled in the art from this Detailed Description.

Further scope of applicability of the methods and systems
of'the present disclosure will become These and other aspects
are described with respect to the drawings. The teachings of
the disclosed application can be readily understood by con-
sidering the following detailed description in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features, and characteristics of the
present disclosure will become more apparent to those skilled
in the art from a study of the following Detailed Description
in conjunction with the appended claims and drawings, all of
which form a part of this specification.

FIG. 1 is a block diagram of modules that make up the
block to be integrated;

FIG. 2 is a block diagram showing pipelined stages pro-
vided in the modules;

FIG. 3 is a block diagram of the Length Module;

FIG. 4 is a block diagram of the End_Values Stage in the
Length Module;

FIG. 5 is a block diagram of the Symbol Positioning Stage
in the Length Module;

FIG. 6 is a block diagram of the Shifter Stage in the Length
Module;

FIG.71s ablock diagram of the Mapper Stage in the Length
Module;

20

25

30

40

45

55

65

4

FIG. 8 is a block diagram of the Distance Module;

FIG. 9 is a block diagram of the Stage for resolving refer-
ences within a word in the Distance Module;

FIG. 10 is a block diagram of the Stage in the Distance
Module for resolving references to prior words;

FIG. 11 is a flow diagram for the Length Module;

FIG. 12 is a flow diagram for the Distance Module;

FIG. 13 is a typical ASIC flow for converting a designto a
form that can be manufactured; and

FIG. 14 is a block diagram illustrating an example general
purpose computing device.

Further scope of applicability of the methods and systems
of the present disclosure will become The figures depict
embodiments of the disclosed invention for purposes of illus-
tration only. One skilled in the art will recognize from the
following discussion that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles of the invention
described herein.

DETAILED DESCRIPTION

The following description refers to the accompanying
drawings. The following description is not intended to limit
the scope. Instead, the scope is defined by the appended
claims.

In an example embodiment, data for a swap device in main
memory of a computer system is compressed in 4K pages. In
the event of a page fault, data stored in the swap device is
formed as an input stream for a decompression integrated
circuit. In an example embodiment, the dictionary may be 256
bytes. In an example embodiment, a functional block is dis-
closed that takes as input an array of 16 symbols representing
the next 16 symbols in a compressed stream and produces as
output an array of 16 bytes representing the next 16 bytes in
the uncompressed stream.

The disclosure is not limited to an array size of 16 symbols.
The array size may be adjusted by, for example, powers of 2,
but may be any arbitrary width.

In addition, it is also possible to set the size of the output to
be larger than the size of the input. In such case, compression
would result in fewer input symbols than output bytes.

A technique for compressing the data for the swap device is
the LZ77 compression algorithm. [.Z77 is a lossless compres-
sion technique that produces as an output, a sequence of
symbols which represent either literal bytes or <length, dis-
tance> pairs. The length represents the number of bytes being
replaced. The distance represents the number of bytes prior in
the input stream where the prior instance occurred.

For example, the sequence “AABCBBABC” may be com-
pressed as:

<len=0, dist=0>

<literal A>

<len=1, dist=1>

<len=0, dist=0>

<literal B>

<len=0, dist=0>

<literal C>

<length=1, dist=2>

<len=1, dist=1>

<len 3, dist=5>

In this compressed sequence, the last length-distance pair
means that a sequence ABC is repeated from a previous
sequence 5 bytes earlier in the stream.

US 9,287,893 B1

5

Itis possible for a sequence of symbols to have a length that
is longer than distance. For example, the sequence “ABABA-
BAB” would be encoded as <literal A>, <literal B>, <len=6,
dist=2>.

The compressed stream of length-distance pairs and liter-
als is provided as the input stream for disclosed embodiments.
The output stream would contain the original sequence of
literals. Embodiments of a functional block for decompres-
sion take as input an array of 16 symbols from the input
stream.
<Functional Block for ASIC>

FIG. 1 illustrates a block diagram for an example embodi-
ment of the functional block 100. The example embodiment
may be in the form of a hardware description language, and in
particular Register-transfer level (RTL) code. A disclosed
approach avoids a highly serialized approach and signifi-
cantly speeds up the decompression rate. In the disclosed
approach the decompression functional block (IP Decom-
pression Integrated Circuit 100) is arranged as a pipeline that
divides the decompression into a length module 200 and a
distance module 800. The length module 200 performs an
operation to expand the lengths, while the distance module
800 performs an operation to resolve the distances. In other
words, the length module 200 processes the lengths in the
length-distance pairs of the input stream, while the distance
module 800 processes the distances.

The length module 200, prior to processing in stages of a
pipeline, determines a width in bytes of each symbol. The
length module 200 determines an end_byte and an end_word
for each symbol in a current word being processed. Also, the
distance module 800 converts distances into pointers, and
involves a step in which pointers may be resolved into new
pointers, before finally being resolved as literals. These fea-
tures contribute to control of processing in the pipeline the
enables achievement of very high decompression rates and
maximum bandwidth.

The functional block 100 includes control inputs and out-
puts for controlling timing of transfer of sets of symbols. An
in_avail input and in_ready output control the transfer of a
new set of symbols into the functional block 100. The in_avail
is set when there are more symbols in the input stream. The
in_ready is set when the pipeline is ready for another set of
symbols. An out_avail output and out_ready input control the
transfer of bytes out of the functional block 100. The out_
ready is set when the output stream is ready to accept more
decompressed data. The out_avail is set when data is available
from the pipeline.

Embodiments of the functional block 100 may include an
Intellectual Property (IP) core as part of a System On Chip
(SOC).
<Pipeline>

FIG. 2 is a block diagram showing the high-level stages in
the pipeline. The functional block 100 may be implemented
as a pipelined structure. In an example embodiment, the func-
tional block accepts as input an array of 16 symbols, repre-
senting the next 16 symbols in the input stream 201 of sym-
bols resulting from compression.

Stage 210 is itself a pipeline (hereinafter, “P” Pipeline).
The P pipeline calculates an end value for each of the 16
symbols. The end value represents the cumulative length
from the first symbol in the 16-symbol word. The pipeline
performs this calculation in multiple stages. In the case of the
16-symbol words, there are five stages in the P pipeline.

Stage 220 is referred to as a symbol positioning stage.
Stage 220 adds the end_byte from the last symbol of the
previous word to the cumulative length of each symbol. The
Stage 220 then separates the end values from Stage 210 into

10

40

45

50

6

an end_byte, and an end_word. The end_byte is Bits[N:0] of
the end value and indicates the absolute position in the output
where a given symbol ends (plus 1 mod 16); N is an integer,
for example 3. The remaining bits are the end_word, which
indicates the number of uncompressed 16 byte words from
the end of the last 16-byte symbol to complete prior to the
current 16-symbol compressed word.

Stage 230 is referred to as the shifter stage, comprising of
an upper shift register 230a and a lower shift register 2305.
The shifter stage holds two consecutive 16-symbol words. A
sliding window extracts the symbols required to produce the
next 16-byte output word and sends the extracted symbols to
the next stage 240. The logic of the shifter stage is such that
the sliding window may overlap symbols in both of the shift
registers as it moves to a set of symbols that constitute an
output word. In other words, the shifter state containing two
shift registers 230a, 2305 enables the sliding window to read
past the end of one register, in the case that part of an output
word exists at the end of a shift register.

Stage 240 is referred to as the mapper stage. The mapper
stage receives the symbols and end_byte values from the
sliding window and maps the symbols to their appropriate
positions in the output stream, repeating symbols as neces-
sary. Results of the mapper stage are that each symbol repre-
sents exactly one byte, and all symbols are either literal bytes
or distances (which point to an earlier symbol that needs to be
repeated.).

Stage 810 is the first stage in the distance module 800.
Stage 820 is a second stage in the distance module 800. It is
noted that it is possible to reverse the order of these two
stages.

Stage 810 is itself a pipeline (hereinafter, “E” Pipeline).
The E Pipeline resolves pointers within the same output word,
and includes a number of pipeline stages. This stage resolves
pointers into either literal values or pointers to prior words. In
an example embodiment, there are four stages in the E Pipe-
line.

Stage 820 is also a pipeline (hereinafter, “F” Pipeline). The
F Pipeline resolves pointers to prior output words. The F
Pipeline resolves pointers using a DEPTH+1 stage pipeline,
where DEPTH resents the maximum distance divided by the
number of bytes per output word. For an example dictionary
0f'256 bytes and a 16 byte output word, the number of stages
inthe F Pipelineis 17. The final stage in the F Pipeline outputs
literals

The F Pipeline updates pointers as the referred-to bytes
come off the end of the pipeline. An alternative approach
would be to save the recent bytes in an array and use a lookup
port in the array to resolve the pointers. This later approach
would require an additional array register, control complexity
and performance degradation to resolve simultaneous refer-
ences to array entries.

The number of gates in the integrated circuit that would be
generated from this design is proportional to the number of
stages. Also, a greater the number of stages leads to an
increase in latency. Thus, it is preferable to minimize the
stages (hardware complexity). The arrangement of stages 210
to 810 would complete the decompression process in the
minimum number of stages. Thus, the arrangement of the
pipeline in FIG. 2 is considered to be optimal.
<Length Module-Functional Arrangement>

FIG. 3 illustrates a block diagram for an example embodi-
ment of the Length Module 200. The Length Module 200
expands the lengths by way of processing by a set of stages in
the pipeline. In this module, the length is removed from the
length-distance pairs, making them <distance> symbols. A
first stage in the Length Module 200 is itself a pipeline (Stage

US 9,287,893 B1

7

1: end_value pipeline 210). In addition to an input of a symbol
array 201, the Length Module 200 takes as input a clock
signal, reset signal, in_avail signal, and an out_ready signal,
and generates as output, an in_ready signal and an out_avail-
able signal.

Before processing by the end_value pipeline begins, a
width calculation circuit 202 calculates a width in bytes of
each data symbol. Invalid symbols are zero bytes wide, literal
symbols are 1 byte wide, and <length, distance> symbols are
length bytes wide. In particular, the width calculation circuit
202 inserts the length of each symbol into a p_end_reg reg-
ister 204 for each respective symbol.

The Length Module 200 is a pipeline that includes Stage 1:
end_value pipeline 210, Stage 2: Symbol Positioning 220,
Stage 3: Shifter 230, and Stage 4: Mapper 240. The Length
Module 200 produces as output literal bytes or distances
mapped to their appropriate positions in the output stream.

FIG. 4 is a block diagram illustrating Stage 1 (210) of the
Length Module 200. In Stage 1, the end_value of each of the
16 symbols in a word is calculated in pipelined stages. The
end_value represents the cumulative length from the first
symbol in the 16-symbol word. The end_values are calculated
in approximately log 2(WIDTH) stages.

In particular, the Stage 1 pipeline 210 generates the cumu-
lative length from the start of the word (symbol 0) to the end
of'each symbol within the word. Because Stage 1 is a pipeline,
stages in this pipeline are referred to as sub-stages.

The sub-stage zero (403) adds the p_end_reg for the even
symbols to p_end_reg for the odd symbols.

The sub-stage 1 (405) adds p_end_reg[1] to p_end_reg[2]
and p_end_reg[3], p_end_reg[5] to p_end_reg[6] and p_en-
d_reg[7], and so on.

The sub-stage 2 (407) adds p_end_reg[3] to p_end_reg[4]
through p_end_reg[7] and adds p_end_reg[11] to p_end_reg
[12] through p_end_reg[15].

This continues to sub-stage log 2(WIDTH) (409) in which
p_end_reg| WIDTH/2-1] is added to p_end_reg[WIDTH/2]
through p_end_reg| WIDTH-1]. After this stage, p_end_reg
for each symbol holds the cumulative length.

In an example embodiment, to reduce timing pressure and
keep the adders as small as possible, the adds may be done in
two equal size chunks, with the add for the more significant
bits happening a cycle late. In particular, each add operation
may be split across 2 or more pipe stages.

For example, the end values may be split into two equal
sized fields. In the first pipe sub-stage 1 all the adds from
sub-stage zero are completed on the lower bits, saving a carry
bit. In sub-stage 1 all the adds from sub-stage zero are com-
pleted on the upper bits plus the saved carry bit. Also in
sub-stage 1 the adds from sub-stage 2 are completed on the
lower bits.

A result of the end_value pipeline in Stage 1 of the Length
Module 200, is the vector p_end_reg for each symbol con-
taining a cumulative length 410.

FIG. 5 is a block diagram illustrating Stage 2: Symbol
Positioning 220 in the Length Module 200. Stage 2 separates
end_values into end_bytes and end_words. A resulting end_
byte indicates the absolute position in the output stream
where a given symbol ends. The end_word indicates the num-
ber of uncompressed 16 byte target words are between the
start of symbol 0 and the end of the current symbol.

In the Symbol Positioning stage, at step 503, the remaining
byte offset of the previous source word (end_byte[15] from
previous word) is added to (end_value[n]) to obtain (end_
value(new)[n]) to align end_bytes to the absolute byte posi-
tions in the destination words. The Symbol Positioning stage
220 then splits end_value for each symbol into end_byte
(505) and end_word (507). Assuming a 16-symbol word, the
end_byte is Bits[3:0] of the end_value. However, the end_
byte is dependent on the WIDTH (number of symbols per

40

45

50

55

8

word). For power-of-2 width, the end_byte is log 2(WIDTH).
For non-power-of-2 width, the end_byte requires a mod(re-
mainder) operation. The end_word is the remaining bits of the
end_value.

Finally at step 509 the symbol position stage calculates
where the boundaries between target words will be. In par-
ticular, boundaries between target words are detected by
determining where end_word changes.

FIG. 6 is a block diagram illustrating Stage 3: Shifter 230.
In an example embodiment, the shifter stage 230 includes a
shift register 610 that holds two consecutive 16-symbol
source words, an upper word 601 of the shift register 610, and
a lower word 603 of the shift register 610. A sliding window
selects groups of symbols to be transferred to the Mapper 240.
At step 605, the sliding window selects up to WIDTH sym-
bols from the lower word 603, but not crossing a boundary
between target words (determined in the symbol positioning
stage 220), and at step 607 transfers the selected symbols to
the Mapper stage 240. The sliding window continues selec-
tion (step 609) as all symbols from the first source word,
stored in the lower word 603, are consumed. Because sym-
bols at this stage can be various lengths, there may be overlap
between the consecutive words. The sliding window moves
toward the end of the upper word. As the end of the shift
register 610 is detected, the second source word is shifted into
the lower word 603 and a new second source word is reloaded
from the symbol positioning stage.

In an example embodiment of the Shifter 230, states of
each symbol are maintained. In particular, in addition to the
end_word and end_byte values maintained for each symbol,
there are three possible states of each symbol:

a. “done”: processing of the symbol has completed;

b. “non-zero™: the processing of the symbol has not com-
pleted and the end_word value is non-zero; and

¢. “0”: the processing of the symbol has not completed and
the end_word value is zero.

The states are initialized to “0” or “non-zero” as the word
is transferred into the upper word 601 of the shift register 610
based on the end_word value calculated in the Symbol Posi-
tioning stage 220.

States of symbols in the lower word 603 and the upper word
601 may have the following properties: The lower word 603
of'the shift register 610, starting with symbol zero and ending
with symbol WIDTH-1, contains zero or more symbols in the
“done” state, followed by zero or more symbols in the “0”
state, followed by zero or more symbols in the “non-zero”
state. The last symbol of the lower word 603 will not transi-
tion to the “done” state. The upper word 601 of the shift
register 610, starting with symbol zero and ending with sym-
bol WIDTH-1, contains zero or more symbols in the “0” state
followed by zero or more symbols in the “non-zero” state.

Embodiments are not limited to encoding states as “0”,
“done”, or “non-zero”, and may instead encode the states
differently or may maintain an additional state that is deriv-
able from the end_word, end_byte, and state values of the
symbol and adjacent symbols.

The selection of the symbols for the sliding window is
controlled by the states of the symbols. A symbol in the lower
word 603 can be selected to be in the sliding window when it
is in the “0” state or immediately after a symbol in the “0”
state. A symbol in the upper word 601 can be selected to be in
the sliding window when:

The last symbol in the lower word 603 is in the “0” state;

The symbol in the upper word 601 is at the same position as
a symbol in the lower word 603 that is in the “done” state.

The symbol in the upper word 601 is in the “0” state, or is
immediately after a symbol in the “0” state, or is symbol 0.

The sliding window may operate in accordance with the
following conditions. The first symbol in the sliding window
will be the first symbol from the lower word 603 of the shift

US 9,287,893 B1

9

register that is not in the “done” state. Symbols that are
selected are contiguous: the first symbol of the upper word
601 of the shift register follows immediately after the last
symbol ofthe lower word 603. There exists a single symbol of
the lower word 603 of the shift register, either symbol 0 ifit is
not in the “done” state or another symbol that is not in the
“done” state and immediately follows a symbol that is in the
“done” state. The position of this single symbol controls a
multiplexer that directs the selected symbols to the Mapper
stage 240.

After a group of symbols selected by the sliding window
are transferred into the Mapper stage 240, the shift register is
updated. If the last symbol of the lower word 603 was in the
“0” state or if the last symbol of the lower word 603 had an
“end_word” value of 1 and an “end_byte” value of 0, the shift
register advances: the contents of the upper word 601 are
moved to the lower word 603 and the upper word 601 is
loaded from the symbol positioning stage 220. As the shift
register advances the states of the symbols from the upper
word 601 are modified: if the symbol was in the sliding
window and in the “0” state or if the symbol was in the sliding
window and had an end_word value of 1 and an end_byte
value of 0, the symbol transitions to the “done” state. If the
symbol was in the “non-zero” state and the last symbol of the
sliding window was in the “non-zero” state, the end_word
value is decremented and the state is updated based on the
new value of end_word.

If the shift register did not advance, the states of the sym-
bols in the lower word 603 are modified (in a similar way): if
the symbol was in the “0” state or if the symbol had an
end_word value of 1 and an end_byte value of 0, the symbol
transitions to the “done” state. If the symbol was in the “non-
zero” state and the last symbol of the sliding window was in
the “non-zero” state, the end_word value is decremented and
the state is updated based on the new value of end_word.

FIG. 7 is a block diagram illustrating Stage 4: Mapper 240
of the Length Module 200. The Mapper 240 is processed in
two stages, Mapper 1 (710) and Mapper 2 (720). Mapper 1
(710) constructs a matrix (mapper_matrix) which is used to
control loading of target words into the Mapper 2 stage (720).

Atstep 711, the Mapper 1 stage (710) captures the symbols
as source symbols, and associated end_byte values, extracted
by the sliding window. At step 713, the end_byte values are
used to construct a matrix to map the source symbols into
target symbols (symbols at appropriate positions in the output
stream). The Mapper 2 stage (720) accumulates target sym-
bols until a full word has been received. A result of the
Mapper Stage 240 are symbols including either literal bytes
or distances to an earlier symbol that is to be repeated.
<Distance Module—Functional Arrangement>

The remaining stages in the pipeline are in the Distance
Module 800. The Distance Module 800 resolves the distances
for distance symbols coming off of the length module.

The Distance Module 800 resolves distances by treating
them as pointers. In an embodiment, the technique of using
pointers takes multiple steps where in earlier steps a pointer
may be resolved by replacing the pointer with a new pointer.
The order of steps is such that the new pointer will be resolved
again later, and at the final step all pointers resolve back to
literals. This technique of replacing pointers instead of using,
for example, relative distances, avoids the need to use adders.

FIG. 8 illustrates stages in the Distance Module 800. Prior
to entry into the stages, a conversion circuit 801 is provided to
convert the distances into pointers that contain byte and word
fields. The byte field represents the absolute byte position
within the output stream. The word field represents the rela-

10

30

40

45

55

10

tive word position. Thus, the conversion circuit 801 converts
symbols to symbols including either literal bytes or <word,
byte> pointers.

The Distance Module 800 resolves distances using two
pipelined stages. A stage 5 (810) resolves pointers within an
output word. A stage 6 (820) resolves pointers to prior output
words.

FIG. 9 is a block diagram for Stage 5 (810).

Stage 5 (810) resolves the pointers within the same output
word (e.g., word field=0) across a number of pipe slots. The
pointers are resolved into either literal values or pointers to
prior words. The Stage 5 (810) resolves pointers using the
following stages:

a. Sub-stage 5-0 (801): pointers from symbol 1 to symbol 0,
3t02,5t04,7t06,9t08,111t0 10, 13to 12, and 15to 14 are
resolved. Pointers are resolved by copying the target symbol
to the referrer. For example, if symbol 1 is a pointer with
<word=0,byte=0>, symbol 0 is copied into symbol 1.

b. Sub-stage 5-1 (803): Pointers from symbols 2 or3to O or
1,6 or7tod4or5,10or11to8or9,and 14 or 15to 12 or 13
are resolved.

c. Sub-stage 5-2 (805): Pointers from symbols 4 through 7
to O through 3 and 12 through 15 to 8 through 11 are resolved.

d. Sub-stage 5-3 (807): Pointers from symbols 8 through 15
through 0 through 7 are resolved.

Thus, Stage 5 (810) produces symbols that are literals or
pointers with word>0.

FIG. 10 is a block diagram for Stage 6 (820).

Stage 6 (820) resolves the references to prior output words.
Stage 6 (820) is a DEPTH+1 stage pipeline, where DEPTH
represents the maximum distance/16. Stages within the Stage
6 pipeline are referred to as sub-stages. As an example, for a
maximum distance of 128, DEPTH would be 8. In an embodi-
ment having a dictionary of 256 bytes, there would be 17
stages.

A next word is transferred (1001) into the Stage. In each
sub-stage except the last, for each symbol the sub-stage
(1011) detects whether the symbol is a pointer to the word in
the final sub-stage by decoding whether the symbol is a
pointer and checking the word value. If so, the sub-stage
(1011) updates its symbol with the appropriate symbol in the
final sub-stage by muxing in the appropriate symbol based on
the pointer byte value. By the final sub-stage (1017) all sym-
bols are literals, and are output as uncompressed bytes
(1020).

Literals output from Stage 6 can be presented directly to the
output stream.

Also, Stage 6 uses a pipeline to update the pointers as the
pointed-to bytes come off the end of the pipeline. Subse-
quently, Stage 6 does not need to save recent bytes in an array
and use a lookup port in the array to resolve the pointers.
<Length Module—Operation>

The operation of the functional block 100 will be
described. The operation represents a decompression method
for data compressed using the [.Z77 technique. The length
module 200 expands the lengths in the <length, distance> pair
symbols.

FIG. 11 is a flow diagram for the operation of the Length
Module of expanding the lengths. FIG. 12 is a flow diagram
for the operation of the Distance Module of resolving the
distances.

In FIG. 11, step S1101 is a preliminary step in which the
width, in bytes, of each data symbol is calculated. Invalid
symbols are assigned a width of zero bytes. Literal symbols
are 1 byte wide. Length-distance symbols are length bytes
wide. The length can be removed from the length-distance
pairs, such that the symbols are <distance>.

US 9,287,893 B1

11

In step S1103, an end_value of each data symbol is calcu-
lated. The end_value represents the cumulative length from
the first symbol in the word.

In step S1105, the end_byte of the last symbol in the
previous word is added to the end_value(s), and the resulting
end_value(s) are split into an end_byte and an end_word. The
end_bytes and end_words are used in control of shift and map
operations in later steps. Also, boundaries between target
words are calculated.

In steps S1107 to S1119, a shift operation is performed to
transfer symbols to a map step S1121, up to WIDTH symbols
at a time. The shift operation uses a sliding window in per-
forming the selection of symbols.

In particular, in step S1107, the shift operation initially
obtains two consecutive source words, a new word and an old
word, and subsequently transfers the old word into the new
word register, and transfers a new word into the new word
register.

In step S1109, a sliding window selects up to WIDTH
symbols. Because of invalid symbols and <distance> sym-
bols that can have various lengths, the WIDTH can vary.
Subsequently, the sliding window can reach a point where
symbols are read from part of the old word and part of the new
word in selecting WIDTH symbols. Detection of an end of a
word is controlled by the end_words. In step S1111, selected
symbols are extracted for transtfer to the map step S1123. At
step S1113, an operation of moving the sliding window to the
next set of WIDTH symbols is performed. In moving the
sliding window, in step S1115, the end_word is checked to
determine if an additional symbol(s) needs to be obtained
beyond the end of the present word. The operation of select-
ing symbols is repeated.

At step S1117, a new word is transferred by moving the
previous new word to the old word register and at step S1119,
if there are more words, step S1121, transferring in the new
word to the new word register.

At step S1123, the selected symbols, and associated end-
_byte values, are received from the sliding window and are
mapped to their appropriate positions in the output stream.
After this step, symbols are either literal bytes or distances.
<Distance Module—Operation>

FIG. 12 is a flow diagram for operation of the Distance
Module 800. As described above, the Distance Module 800
resolves the distances. Distances are resolved by treating
them as pointers. This step takes multiple steps where in
earlier steps a pointer may be “resolved” by replacing the
pointer with a different pointer. The order of steps is such that
the new pointer will be resolved again later, and at the final
step all pointers resolve back to literals. This technique of
replacing pointers instead of using, for example, relative dis-
tances, avoids the need to use an addition step.

In step S1201, distances are converted into pointers that
contain a byte field and a word field. The resulting symbols
are either literal bytes or <word, byte> pointers. The byte field
represents the absolute byte position within the output stream.
The word field represents the relative word position.

In step S1203, pointers within the same output word are
resolved into either literal bytes or pointers to prior words.

In step S1205, the pointers to prior words are resolved until
all symbols are literals.
<Application Specific Integrated Circuit Design Flow>

The disclosure relates to a functional block performing
decompression, particularly for specification at the RTL code
level, to be integrated into an integrated circuit (ASIC). The
integrated circuit has an intended application in an IP core for
a System on Chip (SOC), in particular, for performing hard-
ware accelerated compression/decompression of main

20

40

45

60

12

memory in a computer system. In such case, industry stan-
dard ASIC flow is applicable for manufacturing the present
disclosure.

The present disclosure is suitable for coding in RTL. A
version of the functional block has been implemented in
Verilog RTL. As is known in the art, Verilog RTL, as well as
other hardware description languages, are run using a general
purpose computer. FIG. 13 is a flow diagram illustrating a
general ASIC flow. In the case of the present disclosure, steps
of specification (S1), high level design (S2), and low level
design (S3) are presumed to have been previously been per-
formed. Steps of RTL coding (S4), simulation/verification
(S5, S7), RTL synthesis (S6), and place and route (S8) can
also be performed using a general purpose computer. The
final manufacturing step (S9) is performed in a real environ-
ment. The RTL synthesis (S6) step produces a netlist. A place
and route tool takes the netlist and produces a file to be used
for fabrication of the ASIC.

Alternative Embodiments

The embodiments described above assume a word that has
16 symbols. However, the invention is not limited to a func-
tional block that processes 16 symbol words. The functional
block 100 can be modified to handle power-of-two symbols in
aword. Larger number of symbols can be accomplished using
a greater number of pipeline stages. Non-power-of-two sym-
bols can be accommodated by adjusting the generation of
end_byte and end_word.

The functional block 100 may also be modified to produce
an output that is wider than the input. In such case, the stages
up to and including the shifter stage 230a, 2305 would be
designed according to the input width. The remaining stages
would be designed for the output width.

The final stage 820 in the pipeline can be extended to
multiple steps in order to resolve pointers to words at longer
distances. This could be accomplished by a first step of look-
ing up longer distant word pointers, e.g., at a distance greater
than a predetermined distance, in RAM. The second step can
be accomplished in the stages of the F Pipeline described
above.
<Computer System Implementations>

The apparatus and techniques described herein relate to a
design of a functional block in an Application Specific Inte-
grated Circuit for decompression in hardware. However, one
of'ordinary skill in the art would understand that the technique
for decompression used in the functional block is applicable
to other forms of implementation, such as in software, or
firmware.

FIG. 14 is a block diagram illustrating an example general
purpose computing device 1400 that is arranged for perform-
ing the technique for decompression, for example, in accor-
dance with the method in FIGS. 11 and 12. In a very basic
configuration 1401, computing device 1400 typically
includes one or more processors 1410 and system memory
1420. A memory bus 1430 can be used for communicating
between the processor 1410 and the system memory 1420.

Depending on the desired configuration, processor 1410
can be of any type including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 1410 can
include one more levels of caching, such as a level one cache
1411 and a level two cache 1412, a processor core 1413, and
registers 1414. The processor core 1413 can include an arith-
metic logic unit (ALU), a floating point unit (FPU), a digital
signal processing core (DSP Core), or any combination
thereof. A memory controller 1415 can also be used with the

US 9,287,893 B1

13

processor 1410, or in some implementations the memory
controller 1415 can be an internal part of the processor 1410.

Depending on the desired configuration, the system
memory 1420 can be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 1420 typically includes an operating system
1421, one or more applications 1422, and program data 1424.
Application 1422 includes a decompression algorithm 1423.
Program Data 1424 includes compressed data 1425, as
described above. In some embodiments, application 1422 can
be arranged to operate with program data 1424 on an operat-
ing system 1421. This basic configuration is illustrated in
FIG. 14 by those components within dashed line 1401.

Computing device 1400 can have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 1401 and any
required devices and interfaces. For example, a bus/interface
controller 1440 can be used to facilitate communications
between the basic configuration 1401 and one or more data
storage devices 1450 via a storage interface bus 1441. The
data storage devices 1450 can be removable storage devices
1451, non-removable storage devices 1452, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media can include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 1420, removable storage 1451 and non-
removable storage 1452 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 1400. Any
such computer storage media can be part of device 1400.

Computing device 1400 can also include an interface bus
1442 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 1401
via the bus/interface controller 1440. Example output devices
1460 include a graphics processing unit 1461 and an audio
processing unit 1462, which can be configured to communi-
cate to various external devices such as a display or speakers
via one or more A/V ports 1463. Example peripheral inter-
faces 1470 include a serial interface controller 1471 or a
parallel interface controller 1472, which can be configured to
communicate with external devices such as input devices
(e.g., keyboard, mouse, pen, voice input device, touch input
device, etc.) or other peripheral devices (e.g., printer, scanner,
etc.) via one or more 1/O ports 1473. An example communi-
cation device 1480 includes a network controller 1481, which
can be arranged to facilitate communications with one or
more other computing devices 1490 over a network commu-
nication via one or more communication ports 1482. The
communication connection is one example of a communica-
tion media. Communication media may typically be embod-
ied by computer readable instructions, data structures, pro-
gram modules, or other data in a modulated data signal, such
as a carrier wave or other transport mechanism, and includes

5

10

20

25

30

35

40

45

50

55

60

65

14

any information delivery media. A “modulated data signal”
can be a signal thathas one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communica-
tion media can include wired media such as a wired network
or direct-wired connection, and wireless media such as acous-
tic, radio frequency (RF), infrared (IR) and other wireless
media. The term computer readable media as used herein can
include both storage media and communication media.

Computing device 1400 can be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 1400 can also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

There is little distinction left between hardware and soft-
ware implementations of aspects of systems; the use of hard-
ware or software is generally (but not always, in that in certain
contexts the choice between hardware and software can
become significant) a design choice representing cost vs.
efficiency trade-offs. Though the above-described functional
block 100 is for a hardware implementation, the preferred
vehicle (e.g., hardware, software, and/or firmware) will vary
with the context in which the processes and/or systems and/or
other technologies are deployed. For example, if an imple-
menter determines that speed and accuracy are paramount,
the implementer may opt for a mainly hardware and/or firm-
ware vehicle; if flexibility is paramount, the implementer may
opt for a mainly software implementation; or, yet again alter-
natively, the implementer may opt for some combination of
hardware, software, and/or firmware.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, flowcharts, and/or examples. Insofar as such
block diagrams, flowcharts, and/or examples contain one or
more functions and/or operations, it will be understood by
those within the art that each function and/or operation within
such block diagrams, flowcharts, or examples can be imple-
mented, individually and/or collectively, by a wide range of
hardware, software, firmware, or virtually any combination
thereof. In one embodiment, several portions of the subject
matter described herein may be implemented via Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will
recognize that some aspects of the embodiments disclosed
herein, in whole or in part, can be equivalently implemented
in integrated circuits, as one or more computer programs
running on one or more computers (e.g., as one or more
programs running on one or more computer systems), as one
Or more programs running on one or more processors (e.g., as
one or more programs running on one or more Microproces-
sors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the
software and or firmware would be well within the skill of one
of'skill in the art in light of this disclosure. In addition, those
skilled in the art will appreciate that the mechanisms of the
subject matter described herein are capable of being distrib-
uted as a program product in a variety of forms, and that an
illustrative embodiment of the subject matter described
herein applies regardless of the particular type of signal bear-
ing medium used to actually carry out the distribution.
Examples of a signal bearing medium include, but are not
limited to, the following:

US 9,287,893 B1

15

a. a recordable type medium such as a floppy disk, a hard
disk drive, a Compact Disc (CD), a Digital Video Disk
(DVD), a digital tape, a computer memory, etc.; and

b. a transmission type medium such as a digital and/or an
analog communication medium (e.g., a fiber optic cable, a
waveguide, a wired communications link, a wireless commu-
nication link, etc.).

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices and/or processes into
data processing systems. That is, at least a portion of the
devices and/or processes described herein can be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/
or quantities). A typical data processing system may be
implemented utilizing any suitable commercially available
components, such as those typically found in data computing/
communication and/or network computing/communication
systems.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

The invention claimed is:

1. An integrated circuit, comprising:

adecompression block that receives as input a compressed
input stream made up of symbols in M words, each word
having up to N symbols, where M and N are a positive
integers, and that outputs an uncompressed output
stream made up of an array of literals, the array of literals
being original literals before compression;

the decompression block is configured as a pipeline that
includes a length module and a distance module, the
length module evaluates a length for each symbol, the
distance module resolves the distances in the at least one
length-distance pair;

the length module comprising:

a shifter stage configured to store two consecutive words,
and control a sliding window of S symbols, where S is a
positive integer, in accordance with end word values in
order to extract literals or distances, the end word values
represent the number of uncompressed words between
the start of the first symbol and the end of a current
symbol;

a mapper stage configured to receive the literals or dis-
tances from the sliding window and using end byte val-
ues map the literals or distances to positions in the output

15

20

25

30

35

40

45

50

55

60

65

16

stream, the end byte values represent the absolute posi-
tion in the output stream where a given symbol ends;
the distance module comprising:

a pointer replacement stage configured to replace dis-
tances, represented as pointers within an output word,
with either literals or other pointers to prior words;

a resolution stage configured to replace the other pointers
with literals, and output literals and the replacement
literals to the uncompressed output stream.

2. The integrated circuit of claim 1, wherein the length

module further comprises:

an end value pipeline having a plurality of stages that
calculate for each of the N symbols an end value as a
cumulative length from a first symbol to the Nth symbol
in the array of N symbols; and

a symbol position stage that adds an end byte from a last
symbol of a previous word to the cumulative length for
each symbol and that splits each end value into an end
byte and an end word, to obtain the end byte values and
the end word values.

3. The integrated circuit of claim 2, wherein the end values

are split into two equal sized fields.

4. The integrated circuit of claim 3, wherein the plurality of
stages in the end value pipeline include adders that perform
cumulative additions based on results of earlier stage adders,
wherein adders are split across two or more of the stages.

5. The integrated circuit of claim 1, wherein the shifter
stage uses the end word values to determine that remaining
bits in the sliding window are read from the second of the two
consecutive words, and to determine that a new word needs to
be accepted from a prior stage.

6. The integrated circuit of claim 1, wherein the pointer
replacement stage and the resolution stage are pipelines.

7. The integrated circuit of claim 6, wherein the pipeline in
the resolution stage has Depth+1 stages, where Depth is a
dictionary size in bytes divided by 16.

8. The integrated circuit of claim 1, wherein the resolution
stage has two steps in which, in the first step pointers longer
than a predetermined distance are resolved by lookup in an
external memory, and the second step resolves pointers in a
pipeline.

9. A method of decompressing a compressed input stream
of symbols to produce an output stream of literals, compris-
ing:

performing a length operation on the input stream to pro-
duce an array of literal bytes and distances;

performing a distance operation to produce an array of
literals from the array of literal bytes and distances,

wherein the length operation comprises:

receiving a word from the input stream of symbols, the
word including N symbols;

performing a shifter stage, the shifter stage stores two
consecutive words from the input stream, and controls a
sliding window of S symbols, where S is a positive
integer, in accordance with end word values in order to
extract literals or distances, the end word values repre-
sent the number of uncompressed words between the
start of the first symbol and the end of a current symbol;

performing a mapper stage to receive the literals or dis-
tances from the sliding window and using end byte val-
ues to map the literals or distances to positions in the
output stream, the end byte values represent the absolute
position in the output stream where a given symbol ends;

wherein the distance operation comprises:

performing a pointer replacement stage to replace dis-
tances, represented as pointers within an output word,
with either literals or other pointers to prior words;

US 9,287,893 B1
17 18

performing a resolution stage to replace the other pointers
with literals; and

outputting to the output stream an array of literals based on
the replaced pointers.

10. The method of claim 9, wherein the length operation 5

further comprises:

calculating for each of the N symbols an end value as a
cumulative length from a first symbol to the Nth symbol
in the array of N symbols;

adding an end byte from a last symbol of a previous word 10
to the cumulative length for each symbol; and

splitting each end value into an end byte and an end word,
to obtain the end byte values and the end word values.

#* #* #* #* #*

